If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50m^2+40m-24=0
a = 50; b = 40; c = -24;
Δ = b2-4ac
Δ = 402-4·50·(-24)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-80}{2*50}=\frac{-120}{100} =-1+1/5 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+80}{2*50}=\frac{40}{100} =2/5 $
| 1+(4x)=7x | | 20 x 2+ x =30 | | 1+(4x)=7 | | 7x=1+4x | | 13+20+x=30 | | 5+7+n=20 | | 3x7+5/7=4/7 | | 24=2x÷6+3.14 | | -⅔y=12 | | 2e^=24 | | (5y+5)-(2+4y)=4 | | .14-0.01(x+2)=-0.03(4-x) | | 5/7=1/2/x | | 29=8+u/3 | | Y=3x2-4x+5 | | 5/7=1/2/(x) | | 50=22x+8 | | m–4=12 | | 7y+4y-20=4y+8-8 | | 27=y/3-8 | | 6x+1=12x+1 | | x-((12/100)*x)=150 | | X-(-6)-z=0 | | y/5+10=40 | | 10z+9z=8z | | 4x+7x=62 | | 4-3y=35 | | n=39+20 | | 22-6=2x-6 | | -3(t-5)+5t=4t-6 | | n=67-47 | | -1(2-3x)+x=9-x |